•  
  •  
 

Acta Universitatis Lodziensis, Folia Biologica et Oecologica

Abstract

The searching for biologically active compounds produced by living organisms led to the discovery of a number of compounds with more or less complicated structure. One of the simplest molecules are monoterpenoid lactones and loliolide is the most common among them. Loliolide was found in animals (insects) and plants (flowers, shrubs, trees) both terrestrial and marine, such as algae and corals. Many years of research on plants used in traditional folk medicine of different countries have led to the conclusion that this compound has a variety of biological properties such as anti-cancer, antibacterial, antifungal and antioxidant ones. Moreover, plants containing loliolide are used in alternative medicine in treatment of diabetes and depression. It is extremely interesting that this lactone also affects the behavior of ants as well as the development of certain plants (allelopathic activity). However, sometimes there are side effects as in the case of structural analogues of loliolide contributing to extinction of tropical coral.

Polish Abstract

Poszukiwania związków biologicznie aktywnych wytwarzanych przez organizmy żywe doprowadziły do odkrycia wielu związków o mniej lub bardziej skomplikowanej strukturze. Jednymi z najprostszych cząsteczek są laktony monoterpenoidowe, zaś najczęściej spotykanym spośród nich jest loliolid. Loliolid spotykany jest w organizmach zwierzęcych (owady) i roślinnych (rośliny kwiatowe, krzewy, drzewa) zarówno lądowych jak i morskich takich jak glony lub koralowce. Wieloletnie badania prowadzone nad roślinami używanymi w tradycyjnej medycynie ludowej różnych krajów doprowadziły do stwierdzenia, że związek ten ma różnorodne właściwości biologiczne np. antynowotworowe, antybakteryjne, antygrzybiczne, antyoksydacyjne. Ponadto rośliny zawierające lioliolid są stosowane w medycynie alternatywnej przy leczeniu cukrzycy oraz depresji. Niezmiernie interesujący jest fakt, że lakton ten wywiera również wpływ na zachowanie mrówek jak i na rozwój niektórych roślin (aktywność alleplopatyczna). Czasami jednak można zaobserwować również działania niepożądane jak w przypadku analogów strukturalnych loliolidu mających swój udział w wymieraniu raf tropikalnych.

Keywords

monoterpenoid lactones, loliolide, biological activity fungi, HGT

References

Ahmed, A.A., El-Moghazy, S.A., El-Shanawany, M.A. et al. 2004. Polyol monoterpenes and sesquiterpene lactones from the Pacific Northwest plant Artemisia suksdorfii. Journal of Natural Products, 67: 1705‒1710.

Ali, M.S. 2012. A Bird’s-eye View on Chemistry of Marine Algae from Karachi Coast of North Arabian Sea (Pakistan). Journal of Scientific Research in Pharmacy, 1: 1‒5.

Ali, M.S., Pervez, M.K., Saleem, M. et al. 2003. Dichotenone-A and -B: two new enones from the marine brown alga Dictyota dichotoma (Hudson) Lamour. Natural Product Research, 17: 301‒306.

Borkosky, S., Valdes, D.A., Bardon, A. et al. 1996. Sesquiterpene lactones and other constituents of Eirmocephala megaphylla and Cyrtocymura cincta. Phytochemistry, 42: 1637‒1639.

Chen, Y., Tao, Y., Lian, X. et al. 2010. Chemical constituents of Angiopteris esculenta including two new natural lactones. Food Chemistry, 122: 1173‒1175.

Cheng, S.Y., Huang, K.J., Wang, S.K. et al. 2010. Antiviral and anti-inflammatory metabolites from the soft coral Sinularia capillosa. Journal of Natural Products, 73: 771‒775.

Da Costa, N.C., Yang, Y., Kowalczyk, J. et al. 2008. The analysis of volatiles and nonvolatiles in Yerba Maté Tea (Ilex Paraguariensis). In: I. Blank, M. Wüst, C. Yeretzian (Eds.). Expression of Multidisciplinary Flavour Science, Interlaken, Switzerland: 494‒487.

El Hattab, M., Culioli, G., Valls, R., et al. 2008. Apo-fucoxanthinoids and loliolide from the brown alga Cladostephus spongiosus f. verticillatus (Heterokonta, Sphacelariales). Biochemical Systematics and Ecology, 36: 447‒451.

Elkhayat, E. 2009. Cytotoxic and antibacterial constituents from the roots of Sonchus oleraceus L. growing in Egypt. Pharmacognosy Magazine, 5: 324‒328.

Erosa-Rejón, G., Peña-Rodríguez, L.M. & Sterner O. 2009. Secondary Metabolites from Heliotropium angiospermum. Journal of Mexican Chemical Society, 53: 44‒47.

Fernandez, I., Pedro, J.R. & Polo, E. 1995. Sesquiterpene lactones from Centaurea alba and C. conifera. Phytochemistry, 38: 655‒657.

Fujita, E., Saeki, Y., Ochiart, M. et al. 1972. Investigation of the Neutral Constituents of Lythrum Salicaria L. Bulletin of the Institute for Chemical Research, 50, 327‒331.

Fukushima, T., Tanaka, M., Gohbara, M. et al. 1998. Phytotoxicity of three lactones from Nigrospora sacchari, Phytochemistry, 48: 625‒630.

Garg, S.N. & Agarwal, S.K. 1994. A new monoterpene lactone and chemical composition of essential oil of Brucea jawanica leaves. Journal of Essential Oil Research, 6: 145‒148.

Geng, C. & Liu, X. 2008. New Macrocyclic Diamide from Rauvolfia Yunnanensis Tsiang. Chemical Research in Chinese Universities, 24: 303‒305.

Grayson, D.H. 1997. Monoterpenoids. Natural Product Reports, 14: 477‒522.

Grayson, D.H. 2000. Monoterpenoids. Natural Product Reports, 17: 385‒419.

Grayson, D.H. 1996. Monoterpenoids. Natural Product Reports, 13: 195‒225.

He, Z., Zhang, A., Ding, L et al. 2010. Chemical composition of the green alga Codium Divaricatum Holmes. Fitoterapia, 81: 1125‒1128.

Hiraga, Y., Taino, K., Kurokawa, M. et al. 1997. (-)-Loliolide and other germination inhibitory active constituents in Equisetum arvense. Natural Product Letters, 10: 181‒187.

Hodges, R. & Porte, A.L. 1964. The structure of loliolide : A terpene from Lolium perenne. Tetrahedron, 20: 1463‒1467.

Hunyadi, A., Veres, K., Danko, B. et al. 2012. In vitro anti-diabetic activity and chemical characterization of an apolar fraction of Morus alba leaf water extract. Phytotherapy Research, 27: 847‒851.

Kimura, J. & Maki, N. 2002. New loliolide derivatives from the brown alga Undaria pinnatifida. Journal of Natural Products, 65: 57‒58.

Kuniyoshi, M. 1985. Germination inhibitors from the brown alga Sargassum crassifolium (Phaeophyta, Sargassaceae). Botanica Marina, 28: 501‒503.

Kuo, Y.H, Lo, J.M. & Chan, Y.F. 2002. Cytotoxic components from the leaves of Schefflera taiwaniana. Journal of the Chinese Chemical Society, 49: 427‒431.

Kurokawa, M., Hirose, T., Sugata, Y. et al. 1998. 3-Hydroxy-5,6-epoxy-β-ionone as germination inhibitory active constituent in Athyrium yokoscense. Natural Product Letters, 12: 35‒40.

Machado, F.B., Yamamoto, R.E., Zanoli, K. et al. 2012. Evaluation of the antiproliferative activity of the leaves from Arctium lappa by a bioassay-guided fractionation. Molecules, 17: 1852‒1859.

Molnár, I., Gibson, D.M. & Krasnoff, S.B. 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Natural Product Reports, 27: 1241‒1275.

Neergaard, J.S., Rasmussen, H.B., Stafford, G.I. et al. 2010. Serotonin transporter affinity of (−)-loliolide, a monoterpene lactone from Mondia whitei. South African Journal of Botany, 76: 593‒596.

Okunade, A.L. & Wiemer, D.F. (1985). (‒)-Loliolide, an ant-repellent compound from Xanthoxyllum setulosum. Journal of Natural Products, 48: 472‒473.

Pan, L., Sinden, M.R., Kennedy, A.H. et al. 2009. Bioactive constituents of Helianthus tuberosus (Jerusalem artichoke). Phytochemistry Letters, 2: 15‒18.

Parmeswaran, P.S., Naik, C.G., Das, B. et al. 1996. Constituents of the brown alga Padina tetrastromatica (Hauck)-II. Indian Journal of Chemistry B, 35: 463‒467.

Pettit, G.R., Herald, C.L., Ode, R.H et al. 1980. The isolation of loliolide from an Indian Ocean Opisthobranch mollusk. Journal of Natural Products, 43: 752‒755.

Ragasa, C.Y., Agbayani, V., Hernandez, R.B. et al. 1997. Antimutagenic monoterpene from Malachra fasciata (Malvaciae). Philippine Journal of Science, 126: 183‒189.

Ragasa, C.Y., De Luna, R.D., Cruz Jr, W.C. et al. 2005. Monoterpene lactones from the seeds of Nephelium lappaceum. Journal of Natural Products, 68: 1394‒1396.

Ragasa, C.Y., De Luna, R.D. & Hofilena, J.G. 2005. Antimicrobial terpenoids from Pterocarpus indicus. Natural Product Research, 19: 305‒309.

Rasher, D.B., Stout, E.P., Engel, S. et al. 2011. Macroalgal terpenes function as allelopathic agents against reef corals. Proceedings of the National Academy of Sciences, 108: 17727‒17731.

Rocca, J.R., Tumlinson, J.H., Glancey, B.M. et al. 1983. The queen recognition pheromone of Solenopsis invicta, preparation of (E-6-(1-pentenyl)-2H-pyran-2-one. Tetrahedron Letters, 24: 1889‒1892.

Sarker, S.D., Bright, C., Bartholomew, B. et al. 2000. Calendin, tyrosol and two benzoic acid derivatives from Veronica persica (Scrophulariaceae). Biochemical Systematics and Ecology, 28: 799‒801.

Valde`s. L.J. 1986. Loliolide from Salvia divinorum. Journal of Natural Products, 49: 171-171.

Wong. H.F. & Bron. G.D. 2002. β-Methoxy-γ-methylene-α,β-unsaturated-γ-butyrolactones from Artabotrys hexapetalus. Phytochemistry, 59: 99‒104.

Xiao. Y., Wang. Y.L., Gao. S.X. et al. 2007. Chemical Composition of Hydrilla Verticillata (L. f.) Royle in Taihu Lake. Chinese Journal of Chemistry, 25: 661‒665.

Yang, X., Kang, M.C., Lee, K.W. et al. 2011. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. Coreanum. Algae, 26: 201‒208.

Zajdel, S.M., Graiko, K., Głowniak, K. et al. 2012. Chemical analysis of Penstemon campanulatus (Cav.) Willd. – antimicrobial activities. Fitoterapia, 83: 373‒376.

Zhou, B., Kong, C.H., Li, Y.H et al. 2013. Crabgrass (Digitaria sanguinalis) allelochemicals that interfere with crop growth and the soil microbial community. Journal of Agricultural and Food Chemistry, 61: 5310‒5317.

First Page

1

Last Page

8

Language

eng

Share

COinS