Cannabinoids impact human body by binding to cannabinoids receptors (CB1 and CB2). The two main phytocannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC interacts with CB1 receptors occurring in central nervous system and is responsible for psychoactive properties of marijuana. CBD has low affinity to CB1 receptor, has no psychoactive characteristics and its medical applications can be wider. CB receptors are part of a complex machinery involved in regulation of many physiological processes – endocannabinoid system. Cannabinoids have found some applications in palliative medicine, but there are many reports concerning their anticancer affects. Agonists of CB1 receptors stimulate accumulation of ceramides in cancer cells, stress of endoplasmic reticulum (ER stress) and, in turn, apoptosis. Effects of cannabinoids showing low affinity to CB receptors is mediated probably by induction of reactive oxygen species production. Knowledge of antitumor activity of cannabinoids is still based only on preclinical studies and there is a necessity to conduct more experiments to assess the real potential of these compounds.

Polish Abstract

Kannabinoidy oddziałują na organizm ludzki wiążąc się z receptorami kannabinoidowymi (CB1 oraz CB2). Dwoma głównymi kannabinoidami roślinnymi są Δ9-tetrahydrokannabinol (THC) i kannabidiol (CBD). THC wiąże się z receptorami CB1 obecnymi w obrębie centralnego układu nerwowego, co powoduje psychoaktywne właściwości marihuany. CBD posiada niskie powinowactwo do receptorów CB1, nie posiada właściwości psychoaktywnych, co sprawia, że jego medyczne zastosowanie może być znacznie szersze. Receptory CB są częścią złożonego mechanizmu zaangażowanego w regulację wielu procesów fizjologicznych – układu endokannabinoidowego. Kannabinoidy znalazły pewne zastosowanie w medycynie paliatywnej, lecz istnieje wiele badań dowodzących ich antynowotworowych właściwości. Agoniści receptorów CB1 powodują akumulację związków z grupy ceramidów w komórkach nowotworowych, stres retikulum endoplazmatycznego i w konsekwencji apoptozę. W efektach wywoływanych przez kannabinoidy posiadając niskie powinowactwo do receptorów CB pośredniczy najprawdopodobniej indukcja produkcji reaktywnych form tlenu. Dotychczasowa wiedza dotycząca przeciwnowotworowych właściwości kannabinoidów opiera się tylko na badaniach przedklinicznych. Istnieje potrzeba przeprowadzania kolejnych badań, które umożliwiłyby oszacowanie rzeczywistego potencjału tych związków.


cannabinoids, cancer, tetrahydrocannabinol, THC, cannabidiol, CBD


Andradas, C., Caffarel, M.M., Pérez-Gómez, E., Salazar, M., Lorente, M., Velasco, G., Guzmán, M., & Sánchez, C., 2011. The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene, 30(2): 245–252.

Andradas, C., Blasco-Benito, S., Castillo-Lluva, S., Pilla, P. D., Diez-Alarcia, R., Juanes-García, A. Et al. 2016. Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer. Oncotarget. 7(30): 47565–47575.

Benhar, M., Dalyot, I., Engelberg, D., & Levitzki, A., 2001. Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Molecular and Cellular Biology, 21(20): 6913–6926.

Benhar, M., Engelberg, D., & Levitzki, A., 2002. ROS, stress-activated kinases and stress signaling in cancer. EMBO Reports, 3(5): 420–425.

Birdsall, S.M., Birdsall, T.C., & Tims, L.A., 2016. The Use of Medical Marijuana in Cancer. Current Oncology Reports, 18(7): 40.

Bisogno, T., Hanus, L., De Petrocellis, L., Tchilibon, S., Ponde, D.E., Brandi, I., Moriello, A.S., Davis, J.B., Mechoulam, R., & Di Marzo, V., 2001. Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology, 134(4): 845–852.

Bisogno, T., Melck, D., De Petrocellis, L., & Di Marzo, V., 1999. Phosphatidic acid as the biosynthetic precursor of the endocannabinoid 2-arachidonoylglycerol in intact mouse neuroblastoma cells stimulated with ionomycin. Journal of Neurochemistry, 72(5): 2113–2119.

Bowles, D.W., O’Bryant, C.L., Camidge, D.R., & Jimeno, A., 2012. The intersection between cannabis and cancer in the United States. Critical Reviews in Oncology/Hematology, 83(1): 1–10.

Cabral, G. A., Raborn, E. S., Griffin, L., Dennis, J., Marciano-Cabral, F., 2008. CB2 receptors in the brain: role in central immune function. British Journal of Pharmacology, 153(2): 240–251.

Caffarel, M.M., Sarrió, D., Palacios, J., Guzmán, M., & Sánchez, C., 2006. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Research, 66(13), 6615–6621.

Calvaruso, G., Pellerito, O., Notaro, A., & Giuliano, M., 2012. Cannabinoid-associated cell death mechanisms in tumor models (review). International Journal of Oncology, 41(2): 407–413.

Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzmán, M., Velasco, G., & Iovanna, J.L., 2006. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Research, 66(13): 6748–6755.

Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., & Julius, D., 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288(5464): 306–313.

Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., & Julius, D., 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature, 389(6653): 816–824.

Cianchi, F., Papucci, L., Schiavone, N., Lulli, M., Magnelli, L., Vinci, M.C., Messerini, L., Manera, C., Ronconi, E., Romagnani, P., Donnini, M., Perigli, G., Trallori, G., Tanganelli, E., Capaccioli, S., & Masini, E., 2008. Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 14(23): 7691–700.

ClinicalTrials.gov, 2016a. A Safety Study of Sativex in Combination With Dose-intense Temozolomide in Patients With Recurrent Glioblastoma. In clinicaltrials.gov. Available at: https://clinicaltrials.gov/show/NCT01812603 [Accessed July 18, 2016].

ClinicalTrials.gov, 2016b. Safety and Efficacy of Cannabidiol for Grade I/II Acute Graft Versus Host Disease (GVHD) After Allogeneic Stem Cell Transplantation. In Clinicaltrials.gov. Available at: https://clinicaltrials.gov/ct2/show/NCT01596075 [Accessed July 18, 2016].

Contassot, E., Tenan, M., Schnüriger, V., Pelte, M.-F., & Dietrich, P.-Y., 2004. Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1. Gynecologic Oncology, 93(1): 182–188.

Davis, J.B., Gray, J., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A., & Sheardown, S.A., 2000. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405(6783): 183–187.

Davis, M. P., 2014. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opinion on Investigational Drugs. 23(8): 1123–40.

Elphick, M.R., 2007. BfCBR: a cannabinoid receptor ortholog in the cephalochordate Branchiostoma floridae (Amphioxus). Gene, 399(1): 65–71.

Elphick, M.R., 2002. Evolution of cannabinoid receptors in vertebrates: identification of a CB(2) gene in the puffer fish Fugu rubripes. The Biological Bulletin, 202(2): 104–107.

Elphick, M.R. & Egertová, M., 2001. The neurobiology and evolution of cannabinoid signalling. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1407): 381–408.

Elphick, M.R. & Egertová, M., 2005. The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handbook of Experimental Pharmacology, (168): 283–97.

Elphick, M.R., Satou, Y., & Satoh, N., 2003. The invertebrate ancestry of endocannabinoid signalling: an orthologue of vertebrate cannabinoid receptors in the urochordate Ciona intestinalis. Gene, 302(1): 95–101.

Fernández-Ruiz, J., Romero, J., Velasco, G., Tolón, R.M., Ramos, J.A., & Guzmán, M., 2007. Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends in Pharmacological Sciences, 28(1): 39–45.

Fernández-Ruiz, J., Sagredo, O., Pazos, M.R., García, C., Pertwee, R., Mechoulam, R., & Martínez-Orgado, J., 2013. Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? British journal of Clinical Ppharmacology, 75(2): 323–333.

Fredriksson, R., Lagerström, M.C., Lundin, L.-G., & Schiöth, H.B., 2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Molecular Pharmacology, 63(6): 1256–1272.

Galve-Roperh, I., Sánchez, C., Cortés, M.L., Gómez del Pulgar, T., Izquierdo, M., & Guzmán, M., 2000. Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Medicine, 6(3): 313–319.

Gustafsson, K., Christensson, B., Sander, B., & Flygare, J., 2006. Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Molecular Pharmacology, 70(5): 1612–1620.

Guzmán, M. 2003. Cannabinoids: Potential anticancer agents. Nature Reviews Cancer, 3(10): 745–755.

Guzmán, M., Duarte, M.J., Blázquez, C., Ravina, J., Rosa, M.C., Galve-Roperh, I., Sánchez, C., Velasco, G., & González-Feria, L., 2006. A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. British Journal of Cancer, 95(2): 197–203.

Hart, S., Fischer, O. M., & Ullrich, A. 2004. Cannabinoids Induce Cancer Cell Proliferation via Tumor Necrosis Factor -Converting Enzyme (TACE/ADAM17)-Mediated Transactivation of the Epidermal Growth Factor Receptor. Cancer Research, 64(6): 1943–1950.

Hegde, V.L., Nagarkatti, P.S., & Nagarkatti, M., 2011. Role of myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol. PloS one, 6(4): e18281.

Hermanson, D.J. & Marnett, L.J., 2011. Cannabinoids, endocannabinoids, and cancer. Cancer Metastasis Reviews, 30(3-4): 599–612.

Hers, I., Vincent, E.E., & Tavaré, J.M., 2011. Akt signalling in health and disease. Cellular Signalling, 23(10): 1515–1527.

Hu, G., Ren, G., & Shi, Y., 2011. The putative cannabinoid receptor GPR55 promotes cancer cell proliferation. Oncogene, 30(2): 139–141.

Kogan, N., 2005. Cannabinoids and Cancer. Mini-Reviews in Medicinal Chemistry, 5(10): 941–952.

Laurent, A., Nicco, C., Chéreau, C., Goulvestre, C., Alexandre, J., Alves, A., Lévy, E., Goldwasser, F., Panis, Y., Soubrane, O., Weill, B., & Batteux, F., 2005. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Research, 65(3): 948–956.

Ligresti, A., Moriello, A.S., Starowicz, K., Matias, I., Pisanti, S., De Petrocellis, L., Laezza, C., Portella, G., Bifulco, M., & Di Marzo, V., 2006. Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. The Journal of Pharmacology and Experimental Therapeutics, 318(3): 1375–1387.

Maccarrone, M., Lorenzon, T., Bari, M., Melino, G., & Finazzi-Agro, A., 2000. Anandamide Induces Apoptosis in Human Cells via Vanilloid Receptors: EVIDENCE FOR A PROTECTIVE ROLE OF CANNABINOID RECEPTORS. Journal of Biological Chemistry, 275(41): 31938–31945.

Malhotra, J.D. & Kaufman, R.J., 2007. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxidants & Redox Signaling, 9(12): 2277–2293.

Marshall, A.D., Lagutina, I., Grosveld, G.C. 2011. PAX3-FOXO1 induces cannabinoid receptor 1 to enhance cell invasion and metastasis. Cancer Research. 71(24): 7471–7480.

Massi, P., Massi, P., Vaccani, A., Vaccani, A., Ceruti, S., Ceruti, S., Colombo, A., Colombo, A., Abbracchio, M.P., Abbracchio, M.P., Parolaro, D., & Parolaro, D., 2004. Antitumor Effects of Cannabidiol, a Nonpyschoactive Cannabinoid, on Human Glioma Cell Lines. Journal of Pharmacology and Experimental Therapeutics, 308(3): 838–845.

Massi, P., Vaccani, a., Bianchessi, S., Costa, B., Macchi, P., & Parolaro, D., 2006. The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cellular and Molecular Life Sciences, 63(17): 2057–2066.

Mato, S., Victoria Sánchez-Gómez, M., & Matute, C., 2010. Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia, 58(14): 1739–1747.

McKallip, R.J., Jia, W., Schlomer, J., Warren, J.W., Nagarkatti, P.S., & Nagarkatti, M., 2006. Cannabidiol-Induced Apoptosis in Human Leukemia Cells: A Novel Role of Cannabidiol in the Regulation of p22 phox and Nox4 Expression. Molecular Pharmacology, 70(3): 897–908.

Mckallip, R. J., Nagarkatti, M., & Nagarkatti, P. S. 2005. -9-Tetrahydrocannabinol Enhances Breast Cancer Growth and Metastasis by Suppression of the Antitumor Immune Response. The Journal of Immunology, 174(6): 3281–3289.

McAllister, S.D., Murase, R., Christian, R.T., Lau, D., Zielinski, A.J., Allison, J., Almanza, C., Pakdel, A., Lee, J., Limbad, C., Liu, Y., Debs, R.J., Moore, D.H., & Desprez, P.-Y., 2010. Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Research and Treatment, 129(1): 37–47.

McAllister, S.D., Soroceanu, L., & Desprez, P.-Y., 2015. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids. Journal of Neuroimmune Pharmacology, 10(2): 255–267.

Mckallip, R.J., Jia, W., Schlomer, J., Warren, J.W., Nagarkatti, P.S., & Nagarkatti, M., 2006. Cannabidiol-Induced Apoptosis in Human Leukemia Cells: A Novel Role of Cannabidiol in the Regulation of p22 phox and Nox4 Expression. Molecular Pharmacology, 70(3): 897–908.

Messalli, E. M., Grauso, F., Luise, R., Angelini, A., & Rossiello, R. 2014. Cannabinoid receptor type 1 immunoreactivity and disease severity in human epithelial ovarian tumors. American Journal of Obstetrics and Gynecology, 211(3): 234.e1–6.

Mizushima, N., Levine, B., Cuervo, A.M., & Klionsky, D.J., 2008. Autophagy fights disease through cellular self-digestion. Nature, 451(7182): 1069–1075.

Mukhopadhyay, B., Schuebel, K., Mukhopadhyay, P., Cinar, R., Godlewski, G., Xiong, K., Kunos, G. 2015. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology, 61(5): 1615–1626.

Munson, A.E., Harris, L.S., Friedman, M.A., Dewey, W.L., & Carchman, R.A., 1975. Antineoplastic activity of cannabinoids. Journal of the National Cancer Institute, 55(3): 597–602.

Murataeva, N., Straiker, A., & Mackie, K., 2014. Parsing the players: 2-arachidonoylglycerol synthesis and degradation in the CNS. British Journal of Pharmacology, 171(6): 1379–1391.

National Cancer Institute, 2016. Cannabis and Cannabinoids (PDQ®)–Health Professional Version. Available at: http://www.cancer.gov/about-cancer/treatment/cam/hp/cannabis-pdq#section/_3 [Accessed July 18, 2016].

Nilius, B., Owsianik, G., Voets, T., & Peters, J.A., 2007. Transient receptor potential cation channels in disease. Physiological Reviews, 87(1): 165–217.

O’Sullivan, S.E. & Kendall, D.A., 2010. Cannabinoid activation of peroxisome proliferator-activated receptors: potential for modulation of inflammatory disease. Immunobiology, 215(8): 611–616.

Office of Diversion Control, 2016. Controlled Substances Act. In 21 USC Charter 13 (1970). Available at: http://www.deadiversion.usdoj.gov/21cfr/21usc/ [Accessed July 18, 2016].

Owsianik, G., D’hoedt, D., Voets, T., & Nilius, B., 2006. Structure-function relationship of the TRP channel superfamily. Reviews of Physiology, Biochemistry and Pharmacology, 156: 61–90.

Park, J. 2012. Expression of the cannabinoid type I receptor and prognosis following surgery in colorectal cancer. Oncology Letters, 5(3): 870–876.

Park, J.M., Xian, X.-S., Choi, M.-G., Park, H., Cho, Y.K., Lee, I.S., Kim, S.W., & Chung, I.-S., 2011. Antiproliferative mechanism of a cannabinoid agonist by cell cycle arrest in human gastric cancer cells. Journal of Cellular Biochemistry, 112(4): 1192–1205.

Pérez-Gómez, E., Andradas, C., Flores, J.M., Quintanilla, M., Paramio, J.M., Guzmán, M., & Sánchez, C., 2012. The orphan receptor GPR55 drives skin carcinogenesis and is upregulated in human squamous cell carcinomas. Oncogene, 32(20): 2534–2542.

Pertwee, R.G., Howlett, a C., Abood, M.E., Alexander, S.P.H., Marzo, V. Di, Elphick, M.R., Greasley, P.J., Hansen, H.S., & Kunos, G., 2010. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB 1 and CB 2. Pharmacological Reviews, 62(4): 588–631.

Petrocellis De, L., Ligresti, A., Moriello, A.S., Allarà, M., Bisogno, T., Petrosino, S., Stott, C.G., & Di Marzo, V., 2011. Effects of cannabinoids and cannabinoid-enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes. British Journal of Pharmacology, 163(7): 1479–1494.

Petrocellis De, L., Ligresti, A., Schiano Moriello, A., Iappelli, M., Verde, R., Stott, C.G., Cristino, L., Orlando, P., & Di Marzo, V., 2013. Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. British Journal of Pharmacology, 168(1): 79–102.

Piñeiro, R., Maffucci, T., & Falasca, M., 2011. The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene, 30(2): 142–152.

Pisanti, S., Picardi, P., D’Alessandro, A., Laezza, C., & Bifulco, M. 2013. The endocannabinoid signaling system in cancer. Trends in Pharmacological Sciences, 34(5): 273–282.

Pisanti, S., Malfitano, A.M., Grimaldi, C., Santoro, A., Gazzerro, P., Laezza, C., & Bifulco, M., 2009. Use of cannabinoid receptor agonists in cancer therapy as palliative and curative agents. Best Practice & Research. Clinical Endocrinology & Metabolism, 23(1): 117–131.

Pisanti, S., Picardi, P., Prota, L., Proto, M.C., Laezza, C., McGuire, P.G. 2011. Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis. Blood. 117(20): 5541–5550.

Ramer, R. & Hinz, B., 2008. Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. Journal of the National Cancer Institute, 100(1): 59–69.

Rimmerman, N., Kozela, E., Juknat, A., Levy, R., Vogel, Z. 2013. Cannabinoid Signaling Through Non-CB1R/Non-CB2R Targets in Microglia. In: Abood, M. E., Sorensen, R. G. Stella, N. (ed.), endoCANNABINOIDS: Actions at Non-CB1/CB2 Cannabinoid Receptors, pp. 143–171. NY: Springer New York, New York.

Rimmerman, N., Ben-Hail, D., Porat, Z., Juknat, A., Kozela, E., Daniels, M.P., Connelly, P.S., Leishman, E., Bradshaw, H.B., Shoshan-Barmatz, V., & Vogel, Z., 2013a. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death & Disease, 4: e949.

Ruhaak, L.R., Felth, J., Karlsson, P.C., Rafter, J.J., Verpoorte, R., & Bohlin, L., 2011. Evaluation of the cyclooxygenase inhibiting effects of six major cannabinoids isolated from Cannabis sativa. Biological & Pharmaceutical Bulletin, 34(5): 774–778.

Ryan, D., Drysdale, A.J., Lafourcade, C., Pertwee, R.G., & Platt, B., 2009. Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 29(7): 2053–2063.

Salazar, M., Carracedo, A., Salanueva, I.J., Hernández-Tiedra, S., Lorente, M., Egia, A., Vázquez, P., Blázquez, C., Torres, S., García, S., Nowak, J., Fimia, G.M., Piacentini, M., Cecconi, F., Pandolfi, P.P., González-Feria, L., Iovanna, J.L., Guzmán, M., Boya, P., & Velasco, G., 2009. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. The Journal of Clinical Investigation, 119(5): 1359–1372

Salazar, M., Lorente, M., García-Taboada, E., Hernández-Tiedra, S., Davila, D., Francis, S.E., Guzmán, M., Kiss-Toth, E., & Velasco, G., 2013. The pseudokinase tribbles homologue-3 plays a crucial role in cannabinoid anticancer action. Biochimica et Biophysica Acta, 1831(10): 1573–1578.

Sánchez, C., de Ceballos, M.L., Gómez del Pulgar, T., Rueda, D., Corbacho, C., Velasco, G. 2001. Inhibition of glioma growth in vivo by selective activation of the CB2 cannabinoid receptor. Cancer Research, 1;61(15): 5784–5789.

Sarfaraz, S., Adhami, V.M., Syed, D.N., Afaq, F., & Mukhtar, H., 2008. Cannabinoids for cancer treatment: progress and promise. Cancer Research, 68(2): 339–342.

Sarfaraz, S., Afaq, F., Adhami, V.M., Malik, A., & Mukhtar, H., 2006a. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. The Journal of Biological Chemistry, 281(51): 39480–39491.

Sarnataro, D., Pisanti, S., Santoro, A., Gazzerro, P., Malfitano, A.M., Laezza, C. 2006. The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits human breast cancer cell proliferation through a lipid raft-mediated mechanism. Molecular Pharmacology. 70(4):1298–1306.

Schröder, M. & Kaufman, R.J., 2005. The mammalian unfolded protein response. Annual Review of Biochemistry, 74(1): 739–789.

Shrivastava, A., Kuzontkoski, P.M., Groopman, J.E., & Prasad, A., 2011. Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy. Molecular Cancer Therapeutics, 10(7): 1161–1172.

Starowicz, K., Nigam, S., & Di Marzo, V., 2007. Biochemistry and pharmacology of endovanilloids. Pharmacology & Therapeutics, 114(1): 13–33.

Stella, N., Schweitzer, P., & Piomelli, D., 1997. A second endogenous cannabinoid that modulates long-term potentiation. Nature, 388(6644): 773–778.

Sui, X., Chen, R., Wang, Z., Huang, Z., Kong, N., Zhang, M., Han, W., Lou, F., Yang, J., Zhang, Q., Wang, X., He, C., & Pan, H., 2013. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death & Disease, 4: e838.

Suk, K., Mederacke, I., Gwak, G., Cho, S. W., Adeyemi, A., Friedman, R., & Schwabe, R. F. 2016. Opposite roles of cannabinoid receptors 1 and 2 in hepatocarcinogenesis. Gut, 65(10): 1721–1732.

Vara, D., Salazar, M., Olea-Herrero, N., Guzmán, M., Velasco, G., & Díaz-Laviada, I., 2011. Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death and Differentiation, 18(7): 1099–1111.

Velasco, G., Sánchez, C., & Guzmán, M., 2012. Towards the use of cannabinoids as antitumour agents. Nature Reviews Cancer, 12(6): 436–444.

Venkatachalam, K. & Montell, C., 2007. TRP channels. Annual Review of Biochemistry, 76: 387–417.

Verfaillie, T., Salazar, M., Velasco, G., & Agostinis, P., 2010. Linking ER Stress to Autophagy: Potential Implications for Cancer Therapy. International Journal of Cell Biology, 2010: 930509–930528.

Wang, J. & Ueda, N., 2009. Biology of endocannabinoid synthesis system. Prostaglandins & Other Lipid Mediators, 89(3): 112–119.

White, A.C., Munson, J.A., Munson, A.E., & Carchman, R.A., 1976. Effects of delta9-tetrahydrocannabinol in Lewis lung adenocarcinoma cells in tissue culture. Journal of the National Cancer Institute, 56(3): 655–658.

Whiting, P.F., Wolff, R.F., Deshpande, S., Di Nisio, M., Duffy, S., Hernandez, A. V., Keurentjes, J.C., Lang, S., Misso, K., Ryder, S., Schmidlkofer, S., Westwood, M., & Kleijnen, J., 2015. Cannabinoids for Medical Use. Journal of the American Medical Association, 313(24): 2456–2473.

Zheng, D., Bode, A. M., Zhao, Q., Cho, Y., Zhu, F., Ma, W., & Dong, Z. 2008. The Cannabinoid Receptors Are Required for Ultraviolet-Induced Inflammation and Skin Cancer Development. Cancer Research, 68(10): 3992–3998.

First Page


Last Page




Included in

Biology Commons