•  
  •  
 

Acta Universitatis Lodziensis, Folia Biologica et Oecologica

Abstract

Despite intensive efforts put on prevention of environment pollution by nitroaromatic compounds, these xenobiotics have not been eliminated from the biosphere. The physicochemical properties make nitroaromatics extremely recalcitrant to biodegradation. Therefore, microbial degraders of these pollutants are sought after. This paper reports preliminary results of the study on degradation of 3,5-dinitrosalicylic acid (DNS) by a basidiomycetous fungus Phanerochaete chrysosporium under stationary conditions in a culture medium containing 0.05–0.5% v/v of DNS. The results obtained suggest that the fungus degrades DNS through the reductive pathway.

Polish Abstract

Związki nitrowe to szeroka grupa ksenobiotyków, które ze względu na swoją silną toksyczność, wyjątkową odporność na rozkład biologiczny oraz skłonność do bioakumulacji, stanowią bardzo poważny problem dla biosfery. Prowadzi się obecnie wiele badań nad mikroorganizmami, które zdołały wykształcić szlaki metaboliczne pozwalające na rozkład takich związków jak 2,4,6-trinitrotoluen, kwas pikrynowy czy kwas 3,5-dinitrosalicylowy. Jednym z takich mikroorganizmów jest podstawczak Phanerochaete chrysosporium, należący do grupy grzybów białej zgnilizny drewna. Artykuł ten poświęcony jest badaniom nad rozkładem kwasu 3,5-dinitrosalicylowego przez P. chrysosporium w warunkach hodowli stacjonarnej w pożywce zawierającej 0,05–0,5% masowego kwasu 3,5-dinitrosalicylowego. Uzyskane wyniki wskazują na zdolność wybranego mikroorganizmu do rozkładu substratu na drodze redukcji grup nitrowych.

Keywords

nitroaromatic compounds, white-rot fungi, fungal biodegradation

References

Anasonye, F., Winquist, E., Räsänen, M. 2015. Bioremediation of TNT contaminated soil with fungi under laboratory and pilot scale conditions. International Biodeterioration, 105: 7–12.

Apelblat, A., Manzurola, E. 1999. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium- DL -aspartate in water from T’s ( 278 to 348) K. Journal of Chemical Thermodynamics, 31: 85–91.

Bayman, P., Radkar, G. 1997. Transformation and Tolerance of TNT(2,4,6-trinitrotoluene) by Fungi. International Biodeterioration and Biodegradation, 39: 45–53.

Bonnarme, P., Jeffries, T.W. 1990. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Applied Environmental Microbiology, 56: 210–217.

Claus, H. 2013 Microbial degradation of 2,4,6-Trinitrotoluene in vitro and in natural environments. Environmental science and engineering biological remediation of explosive residues. Environmental Science and Engineering, 15–38.

Cvancarova, M., Kfesinova, Z.,Filipova, A., Covino, S., Cajthami, T. 2012. Biodegradation of PCBs by ligninolytic fungi and characterization of the degradation products. Chemosphere, 88: 1317–1323.

Fnu, A.,Brzonova, I., Voeller, K., Kozilak, E., Kubatova, A., Yao B., Ji, Y. 2016 Biodegradation of lignin by fungi, bacteria and laccases. Bioresource Technology, 220: 414–424.

Gong, P., Kuperman, R.G., Sunahara, G.I. 2003. Genotoxicity of 2,5-and 2,6-dinitrotoluene as measured by Tradescantia micronucleus (Trad-MN) bioassay. Mutation Research, 538: 13–18.

Grundlingh, J., Dargan, P., El-Zanfaly, M., Wood, D. 2011. 2,4-Dinitrophenol (DNP): A weight loss agent with significant acute toxicity and risk of death. Journal of MedicalToxicology, 7: 205–212.

Haberman, C. 2014. Agent Orange’s Long Legacy, for Vietnam and Veterans. New York Times.

Infante-Castillo, R., Hernandez-Rivera S. 2012. Predicting Heats of Explosion of Nitroaromatic Compounds through NBO Charges and 15N NMR Chemical Shifts of Nitro Groups. Advances in Physical Chemistry, vol. 2012.

Kulkarni, M., Chaudhari, A. 2007. Microbial remediation of nitro-aromatic compounds: An overview. Journal of Environmental Management, 85: 496–512.

Kumar A., Pandith, A., Seok-Kong, K. 2016. Pyrenebutylamidopropylimidazole as a multi-analyte sensor for 3,5-dinitrosalicylic acid and Hg2+ ions. Journal of Luminescence, 172: 309–316.

Lenke H., Knackmuss, H.J. 1992. Initial hydrogenation during catabolism of picric acid by Rhodococcuserythropolis HL 24-2. Applied EnvironmentalMicrobiology, 58: 2933–2937.

Lipczynska-Kochany, E. 1992. Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: Photolysis in the presence of hydrogen peroxide versus the Fenton reaction. Chemosphere, 24: 1369–1380.

Mathieu, D., Alaime, T. 2015. Impact sensitivities of energetic materials: Exploring the limitations of a model based only on structural formulas. Journal of Molecular Graphics and Modelling, 62: 81–86.

Maza M., Pajot, H.F., Amoroso, M.J., Yasem, M.G. 2015. In-vitro degradation of Czapek and molasses amended post-harvest sugarcane residue by lignocellulolytic fungal strains. International Biodeterioration and Biodegradation, 104: 118–122.

Nousiainen P., Kontro, J., Manner, H. 2014. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Fungal Genetic Biology, 72: 137–149.

Price, R.A., Pennington, J.C., Neumann, D., Hayes, C.A., Larson S.L. 1997. Technical Report EL-97–11 US Army Engineer Waterways Experiment Station, Vicksburg.

Rezaei, B. 2010. Using of multi-walled carbon nanotubes electrode for adsorptive stripping voltammetric determination of ultratrace levels of RDX explosive in the environmental samples. Journal of Hazardous Materials, 83: 138–144.

Sekhar, P.K., Wignes, F. 2016. Trace detection of research department explosive (RDX) using electrochemical gas sensor. Journal of Sensors, 227: 185–190.

Shen, J., Zhang, J., Zuo, Y. 2009. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. Journal of Hazardous Materials, 163: 1199–1206.

Singh, R.L., Singh, P.K., Singh, R.P. 2015. Enzymatic decolorization and degradation of azodyes – A review. International Biodeterioration, 104: 21–31.

Spain J. 1995. Biodegradation of nitroaromatic compounds. Annual Review in Microbiology, 49: 523–555.

Spain, J., Hughes, J., Knackmuss, H-J. 2000. Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, pp. 213–234.

Tashes, F., Bumpus, J., Aust, S. 1990. Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium. Applied and environmental microbiology. 56: 1666–1671.

First Page

14

Last Page

22

Language

eng

Included in

Biology Commons

Share

COinS