•  
  •  
 

Acta Universitatis Lodziensis, Folia Biologica et Oecologica

Abstract

Decisions made by predators during predatory encounters are often based on multiple factors that may influence the outcome of the encounters. For stalking predators their visibility to the prey and the ability of their prey to escape may be important factors influencing predatory success. Hence they are likely to adapt their predatory behavior when approaching prey on backgrounds with different camouflaging properties, but only if the prey is able to escape. To test whether jumping spiders flexibly adapt their predatory behavior to camouflaging properties of the background and prey type, the behavior of Yllenus arenarius (Araneae, Salticide), a cryptically colored jumping spider hunting leafhoppers (high escape potential) and caterpillars (low escape potential) on two types of background: matching and non-matching for the spiders was analyzed. Background color had a significant effect on the spiders’ jumping distance and their predatory success, but only if the prey had a high escape potential. No differences occurred between backgrounds if the prey could not escape. On camouflaging background the spiders attacked leafhoppers from a shorter distance and had a higher success than on non-camouflaging background.

Keywords

crypsis, predatory behavior, behavioral plasticity, salticid spider, Yllenus arenarius

References

Bartos, M. 2004. The prey of Yllenus arenarius (Araneae, Salticidae). Bulletin of the British Arachnological Society, 13: 83–85.

Bartos, M. 2005. The life history of Yllenus arenarius (Araneae, Salticidae) – evidence for sympatric populations isolated by the year of maturation. Journal of Arachnology, 33: 222–229.

Bartos, M. 2007. Hunting prey with different escape potentials – alternative predatory tactics in a dunedwelling salticid. Journal of Arachnology, 35: 499–509.

Bartos, M. 2008. Alternative predatory tactics in a juvenile jumping spider. Journal of Arachnology, 36: 300–305.

Bartos, M. 2011. Partial dietary separation between coexisting cohorts of Yllenus arenarius (Araneae: Salticidae). Journal of Arachnology, 39: 230–235.

Bear, A. & Hasson, O. 1997. The predatory response of a stalking spider, Plexippus paykulli, to camouflage and prey type. Animal Behaviour, 54: 993–998.

Blest, A.D., Hardie, R.C., McIntyre, P. & Williams, D.S. 1981. The spectral sensitivities of identified receptors and the function of retinal tiering in the principal eyes of a jumping spider. Journal of Comparative Physiology A, 145: 227–239.

Blest, A.D., O'Carrol, D.C. & Carter, M. 1990. Comparative ultrastructure of layer I receptor mosaics in principal eyes of jumping spiders: the evolution of regular arrays of light guides. Cell and Tissue Research, 262: 445–460.

Briscoe, A.D. & Chittka, L. 2001. The evolution of color vision in insects. Annual Revue of Entomology, 46: 471–510.

Edwards, G.B. & Jackson, R.R. 1993. Use of preyspecific predatory behaviour by North American jumping spiders (Araneae, Salticidae) of the genus Phidippus. Journal of Zoology, 229: 709–716.

Forster, L.M. 1977. A qualitative analysis of hunting behaviour in jumping spiders (Araneae: Salticidae). New Zealand Journal of Zoology, 4: 51–62.

Forster, L.M. 1982. Vision and prey-catching strategies in jumping spiders. American Scientist, 70: 165–175.

Harland, D.P. & Jackson, R.R. 2004. Portia Perceptions: the Umwelt of an araneophagic jumping spider. In: Prete F.R. (ed.), Complex worlds from simpler nervous systems. MIT Press, Cambridge, pp. 5–40.

Jackson, R.R & Carter, C.M. 2001. Geographic variation in reliance on trial-and-error signal derivation by Portia labiata, an araneophagic jumping spider from the Philippines. Journal of Insect Behavior, 14: 799–827.

Jakob, E., Skow, C. & Long, S. 2011. Plasticity, learning and cognition. In: Herberstein M.E. (ed.), Spider behaviour: flexibility and versatility. Cambridge University Press, New York pp. 307–347.

Jackson, R.R. & Nelson, X. 2012. Attending to detail by communal spider-eating spiders. Animal Cognition, 15: 461–471.

Land, M.F. 1969a. Structure of the retinae of the principal eyes of jumping spiders (Salticidae: Dendryphantinae) in relation to visual optics. Journal of Experimental Biology, 51: 443–470.

Land, M.F. 1969b. Movements of the retinae of jumping spiders (Salticidae: Dendryphantinae) in response to visual stimuli. Journal of Experimental Biology, 51: 471–493.

Land, M.F. 1972. Mechanisms of orientation and pattern recognition by jumping spiders (Salticidae). In: Wehner R. (ed.), Information processing in the visual systems of arthropods. Springer, Berlin, pp. 231–247.

Land, M.F. 1985. Fields of view of the eyes of primitive jumping spiders. Journal of Experimental Biology, 119: 381–384.

Li, D., Jackson, R.R., & Barrion, A. 1999. Parental and predatory behaviour of Scytodes sp., an araneophagic spitting spider (Araneae: Scytodidae) from the Philippines. Journal of Zoology, London, 247: 293–310.

Li, D. & Jackson, R.R. 2003. A predator’s preference for egg-carrying prey: a novel cost of parental care. Behavioral Ecology and Sociobiology, 55: 129–136.

Li, D., Jackson, R.R. & Lim, M.L.M. 2003. Influence of background and prey orientation on an ambushing predator’s decisions. Behaviour, 140: 739–764.

Li, J., Lim, M.L.M., Zhang, Z., Liu, Q., Liu, F., Chen, J. & Li, D. 2008. Sexual dichromatism and male colour morph in ultraviolet-B reflectance in two populations of the jumping spider Phintella vittata (Araneae: Salticidae) from tropical China. Biological Journal of the Linnean Society, 94: 7–20.

Nakamura, T. & Yamashita, S. 2000. Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology A, 186: 897–901.

Nelson, X.J. & Jackson, R.R. 2011. Flexibility in the foraging strategies of spiders. In: Herberstein M.E. (ed.), Spider behaviour: flexibility and versatility, Cambridge University Press, New York, pp. 31–56.

Nelson, X.J. & Jackson, R.R. 2012a. Fine-tuning of vision-based prey-choice decisions by a predator that targets malaria vectors. Journal of Arachnology, 40: 23–33.

Nelson, X.J. & Jackson, R.R. 2012b. The discerning predator: decision rules underlying prey classification by a mosquito-eating jumping spider. Journal of Experimental Biology, 215: 2255–2261.

Peaslee, A.G. & Wilson, G. 1989. Spectral sensitivity in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology A, 164: 359–363.

Williams, D. & McIntyre, P. 1980. The principal eyes of a jumping spider have a telephoto component. Nature, 288: 578–580.

Yamashita, S. & Tateda, H. 1976. Spectral Sensitivities of Jumping Spider Eyes. Journal of Comparative Physiology A, 105: 29–41.

Zar, J.H. 1984. Biostatistical Analysis. 2nd edition. Prentice-Hall, New Jersey.

Zurek, D. & Nelson, X.J. 2012. Saccadic tracking of targets mediated by the anterior-lateral eyes of jumping spiders. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 198: 411–417.

First Page

26

Last Page

34

Language

eng

Share

COinS